
(* 2016.10.22 This is to show 3dPlot in the same scale for all the axes *)

(* g1, g2 for Cobb-Douglas, pla, pl2 for planes.*)

(* Remove["Global`*"] *)

TextStyle"Cobb-Douglas Utility Function with Two Goods: x1/3y2/3", "Title"

g1 = Plot3D[(x^(1 / 3)) * (y^(2 / 3)), {x, 0, 5}, {y, 0, 5},

AxesLabel  {"x", "y", "z"}, LabelStyle  Directive[Bold, Large], ImageSize  Large,

FaceGrids -> All, BoundaryStyle -> Directive[Black, Thickness[0.015]],

BoxRatios -> Automatic, PlotRange -> {{0, 5}, {0, 5}, {0, 5.7}}]

Style"By the way, this is how Cobb-Douglas Function, x2/3y1/3, looks like", "Title"

Plot3D[(x^(2 / 3)) * (y^(1 / 3)), {x, 0, 5}, {y, 0, 5},

AxesLabel  {"x", "y", "z"}, ImageSize  Large, FaceGrids -> All,

BoundaryStyle -> Directive[Black, Thickness[0.015]],

BoxRatios -> Automatic, PlotRange -> {{0, 5}, {0, 5}, {0, 5.7}}]

Style

"Here we use the Cobb-Douglas Function: x1/3y2/3. Let us see it in a full scale.",

"Title"

Show[g1, ImageSize  Full]

(* By the way, we can derive indifference curves *)

(* Inddiference curve at z = 2 *)

Text[Style["Before thinking about partial

differnatiation, let us consider Indifference Curve", Blue, 24]]

TextStyle"Let us cut z = x1/3y2/3 at z = 1.5", Black, 24

pl1 = ContourPlot3D[z  1.5, {x, 0, 5},

{y, 0, 5}, {z, 0, 5.7}, AxesLabel  {"x", "y", "z"},

LabelStyle  Directive[Bold, Large], ImageSize  Large, ContourStyle  Blue]

Show[g1, pl1]

Text[Style["The Contour made by z=1.5 plane gives us an indifference curve.", 24]]

ContourPlot[(x^(1 / 3)) * (y^(2 / 3))  1.5,

{x, 0, 5}, {y, 0, 5}, AxesLabel  {"x", "y"}]

Text[Style["By cutting with different value 'z's, we can have many

idifference curves representing different utility level.", 24]]

ContourPlot[(x^(1 / 3)) * (y^(2 / 3)), {x, 0, 5}, {y, 0, 5},

AxesLabel  {"x", "y"}, PlotLegends  Automatic]

(* try to draw y = 1 plane *)

(*s1={{0,1,0},{0,1,5.7},{5,1,0},{5,1,5.7}}

Show [Graphics3D[Polygon[s1], AxesLabel{"x","y","z"}]]*)

Text[

]



Style["But our main purpose now is to understand partial derivatives!", "Title"]]

Text[ Style["Recall that a derivative in 2D is a slope that approximates

the original curve at a specific point. How about in 3D?", 24]]

Text Style"Let us consider x1/3y2/3 at (x, y) = (2, 1).", 24

label1 = Graphics3DTextStyle"(2, 1, 21/312/3)", Blue, 28, {2, 1, 1.6};

po1 = ListPointPlot3D[{{2, 1, N[2^(1 / 3) 1^(2 / 3)]} },

AxesLabel  {"x", "y", "z"}, BoxRatios  Automatic, PlotStyle  PointSize[0.03]];

Show[g1, po1, label1]

Text[Style["Magniy it around (x, y, z) = (2, 1, 2^(1/3) 1^(2/3))", 24]]

g11 = Show[Plot3D[{(x^(1 / 3)) * (y^(2 / 3))},

{x, 1.5, 2.5}, {y, 0.5, 1.5} , AxesLabel  {"x", "y", "z"},

LabelStyle  Directive[Bold, Large], ImageSize  Full, FaceGrids -> All,

BoundaryStyle -> Directive[Black, Thickness[0.02]], BoxRatios -> Automatic], po1]

Text[

Style["We can guess that a plane is a strong candidate for approximating this curved

surface at (x, y, z) = (2, 1, 2^(1/3)*1^(2/3))", 24]]

Text[Style["Let us confirm our guess.", "Title"]]

Text[Style["Fix y at some value, then look at

our 3D graphic from x axis. The 3D becones like a 2D.", 24]]

Text[Style["Here we fix y at 1.", 24]]

pl2 = ContourPlot3D[y  1, {x, 0, 5},

{y, 0, 5}, {z, 0, 5.7}, AxesLabel  {"x", "y", "z"},

LabelStyle  Directive[Large, Bold], ImageSize  Large, ContourStyle  Black]

Show[g1, pl2]

g2 = Plot[{(x^(1 / 3)) * (1^(2 / 3))}, {x, 0, 5},

AxesLabel  {"x", "z"}, AspectRatio  Automatic, ImageSize  Large,

LabelStyle  Directive[Bold, Large], PlotStyle  {Black}]

Text[Style["If we change the value of y, the pseudo

2D graphs change its shape a bit. Here we fix y at 3.", 24]]

pl3 = ContourPlot3D[y  3, {x, 0, 5}, {y, 0, 5}, {z, 0, 5.7},

AxesLabel  {"x", "y", "z"}, ImageSize  Large,

ContourStyle  Red, LabelStyle  Directive[Large, Bold]]

Show[g1, pl3]

(*N[3^(-(1/3))]*)
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Text[Style["The contour is another 2D graphic", 24]]

g3 = Plot[(x^(1 / 3)) * (3^(2 / 3)), {x, 0, 5},

AxesLabel  {"x", "z"}, AspectRatio  Automatic, ImageSize  Large,

PlotStyle  {Red}, LabelStyle  Directive[Bold, Large]]

Text[Style["We can see the differnces by the cutting values of y", 24]]

Plot[{(x^(1 / 3)) * (1^(2 / 3)), (x^(1 / 3)) * (3^(2 / 3))}, {x, 0, 5},

AspectRatio  Automatic, ImageSize  Large, PlotRange -> {{0, 5}, {0, 3.6}},

PlotStyle  {Black, Red}, PlotLegends -> {"at y = 1", "at y =3"}]

Text[Style["Now we focus on the 2D with y =1.", Black, "Title"]]

Text[Style["Differentiate (x^(1/3))*(1^(2/3)) with respect x,", 24]]

D[(x^(1 / 3)) * (1^(2 / 3)), x]

Text[

Style["Differentiate x^(1/3))*(y^(2/3) with respect x. Here, we are doing partial

differnetiation. Please accept the result at this stage.", 24]]

D[(x^(1 / 3)) * (y^(2 / 3)), x]

Text[Style["Derivative (= scalar) of 2D at x = 2", 24]]

s1 = N[D[(x^(1 / 3)) * (1^(2 / 3)), x] /. x  2]

Text[Style["Partial derivative of 3D at (x, y) = (2, 1)", 24]]

N[D[(x^(1 / 3)) * (y^(2 / 3)), x] /. {x  2, y  1}]

Text[Style[

"In short, partial derivative in 3D is a `slope' of 2D after fixing y (or x)", 24]]

(* The vale of (x^(1/3))*(1^(2/3)) at x = 2 *)

v1 = N[(x^(1 / 3)) * (1^(2 / 3)) /. x  2];

(* by putting cumma, the output is not shown *)

(* b1: y intercept: set a line going through (2,v1) *)

b1 = v1 - s1 * 2;

Text[

Style["Partial derivative with respect to x at (x, y, z)=(2, 1, 2^(1/3))*(1^(2/3))

is a slope of (x^(1/3))*(1^(2/3)) at x = 2", 24]]

Text[Style["With the 'scalar value' of slope and the information

that the slope is evaluated at (x, z) = (2,

2^(1/3))*(1^(2/3)), we can derive a tangent line", Blue, 24]]

Text[Style[

"The derived tangent line is z = 0.8399473665965822 + 0.20998684164914552*x", 24]]

y1 = Plot[{ b1 + s1 * x}, {x, 0, 5}, ImageSize  Large,
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AxesOrigin  {0, 0}, PlotStyle  {Blue}, AxesLabel  {"x", "z"},

LabelStyle  Directive[Large, Bold], AspectRatio  Automatic]

Show[g2, y1, ImageSize  Large]

Text[Style["As usual, tangent lines derived

from derivatives are Very good approximates of curves", 24]]

Text[Style["Let us magnify the 2D graph and the tangebt line around x = 2", 24]]

Plot[{{b1 + s1 * x}, {(x^(1 / 3)) * (1^(2 / 3))}}, {x, 1.8, 2.2},

PlotStyle  {Blue, Black}, ImageSize  Full, AxesLabel  {"x", "z"},

LabelStyle  Directive[Bold, Large], AspectRatio  Automatic]

Text[Style[

"Let us have a look at partial derivative with respect to x at (2,1) on 3D", 24]]

b1 + s1 * 2;

N[2^(1 / 3)]; (*This is to confirm the z value a (x,y) = (2,1) *)

l1 = Graphics3D[

{Blue, Thick, Line[{{0, 1, b1}, {2, 1, b1 + s1 * 2}, {4.8, 1, b1 + s1 * 4.8}}]}];

Show[g1, l1, po1]

(*Graphics3D[Arrow{{2,1,N[2^(1/3) 1^(2/3)]},{2.5 ,1,N[2^(1/3)+(s1*0.5)]}}] *)

Text[Style["We can do the similar procedure by fixing x at 2", 24]]

pl4 = ContourPlot3D[x  2, {x, 0, 5},

{y, 0, 5}, {z, 0, 5.7}, AxesLabel  {"x", "y", "z"},

ImageSize  Large, ContourStyle  Green, PlotLabel  "x = 2"]

Show[g1, pl4]

Text[Style["The contour is a 2D graphic", 24]]

g4 = Plot[{(2^(1 / 3)) * (y^(2 / 3))}, {y, 0, 5},

AxesLabel  {"y", "z"}, LabelStyle  Directive[Large, Bold],

AspectRatio  Automatic, ImageSize  Large, PlotStyle  Green]

Text[Style["Differentiate (2^(1/3))*(y^(2/3)) with respect y,", 24]]

D[(2^(1 / 3)) * (y^(2 / 3)), y]

Text[Style["Differentiate (x^(1/3))*(y^(2/3)) with

respect y. Here, we are doing partial differnetiation.", 24]]

D[(x^(1 / 3)) * (y^(2 / 3)), y]
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Text[Style["Derivative of 2D at y = 1", 24]]

s2 = N[D[(2^(1 / 3)) (y^(2 / 3)), y] /. y  1]

Text[Style["Partial derivative of 3D at (x, y) = (2, 1)", 24]]

N[D[(x^(1 / 3)) * (y^(2 / 3)), y] /. {x  2, y  1}]

N[(2 / 3) * 2^(1 / 3)];

v2 = N[(2^(1 / 3)) * (y^(2 / 3)) /. y  1];

(* Derive y intercept *)

(* Solve[ v2  (s2*1)+b1,b1];*)

b2 = v2 - s2 * 1;

Text[

Style["Partial derivative with respect to y at (x, y, z)=(2, 1, 2^(1/3))*(1^(2/3))

is a slope of (2^(1/3))*(y^(2/3)) at y = 1", 24]]

Text[Style["With the 'scalar value' of slope and the information

that the slope is evaluated at (y, z) = (1,

2^(1/3))*(1^(2/3)), we can derive a tangent line", Blue, 24]]

Text[Style["The derived tangent line is z = 0.4199736832982911

+ 0.8399473665965821*y", 24]]

y2 = Plot[{b2 + s2 * y}, {y, 0, 5}, AxesOrigin  {0, 0}, AxesLabel  {"y", "z"},

LabelStyle  Directive[Large, Bold], AspectRatio  Automatic]

Show[g4, y2, ImageSize  Large]

TextStyle"Partial derivative with respect to y at (2, 1, 21/312/3) on 3D", 24

l2 = Graphics3D[

{Blue, Thick, Line[{{2, 0, b2}, {2, 1, b2 + s2 * 1}, {2, 4.8, b2 + s2 * 4.8}}]}];

Show[g1, l2, po1]

(*Graphics3D[Arrow{{2,1,N[2^(1/3) 1^(2/3)]},{2.5 ,1,N[2^(1/3)+(s1*0.5)]}}] *)

Text[Style["If we combine the two tangent lines on 3D", 24]]

Show[g1, l1, l2, po1]

(*Graphics3D[Arrow{{2,1,N[2^(1/3) 1^(2/3)]},{2.5 ,1,N[2^(1/3)+(s1*0.5)]}}] *)

(*

Show[g1,Graphics3D[ Arrow[{{2,1,N[2^(1/3)*1^(2/3)]},

{2,2,N[2^(1/3)*1^(2/3)+(0.8399473665965821)]}}]],Graphics3D[

Arrow[{{2,1,N[2^(1/3)*1^(2/3)]},{3,1,2^(1/3)+(0.20998684164914552)}}]],

Graphics3D[ Arrow[{{2,1,N[2^(1/3)*1^(2/3)]},{2,1,(2^(1/3))-1}}]]]

*)

TextStyle"The two tangent lines in 3D give us a

plane: A Tangent Plane on (x, y, z) = (2, 1, 21/312/3)", Red, 24
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d[x_, y_] = ((1 / 3) (2^(-(2 / 3)))) * (x) + ((2 / 3) * (2)^(1 / 3)) * (y)

plane1 = Plot3D[d[x, y], {x, 1.5, 2.5}, {y, 0.5, 1.5},

AxesLabel -> {"x", "y", "z"}, ImageSize  Large,

PlotStyle  Red, LabelStyle  Directive[Large, Bold], BoxRatios  Automatic];

Show[plane1, po1, l1, l2]

Text[

Style["Recall that our goal is to use derivatices (calculus) in economics: linear

approximation of 'non-linear' relationships", Red, 24]]

(*Text[

Style["On the tangent Plane at (x, y) = (2,1), let us put a point on 'Non-linear'

Surface where (x, y) = (2.3, 1.4).",Blue, 24]]*)

TextStyle"Can the tangent Plane at (x, y, z) = (2, 1, 21/312/3)

approxiapiate the curved surface at, for example,

(x, y, z) = (2.3, 1.4, 2.31/31.42/3) well?", 24

po22 = ListPointPlot3D[{{2.3, 1.4, N[2.3^(1 / 3) 1.4^(2 / 3)]}} ,

AxesLabel  {"x", "y", "z"}, BoxRatios  Automatic,

PlotStyle  PointSize[0.09], LabelStyle  Directive[Large, Bold]];

po11 = ListPointPlot3D[{{2, 1, N[2^(1 / 3) 1^(2 / 3)]}} ,

AxesLabel  {"x", "y", "z"}, BoxRatios  Automatic,

PlotStyle  PointSize[0.09], LabelStyle  Directive[Large, Bold]];

(* make point size larger to emphasize the approximtion *)

label2 =

Graphics3DTextStyle"(2.3, 1.4, 2.31/31.42/3)", Blue, 24, {2.3, 1.4, 1.8};

Show[plane1, po11, po22, label1, label2]

Text

Style"You can see that the point at (x, y, z) = (2.3, 1.4, 2.31/31.42/3) dipped into

the plane a little bit, but the plane is surely a good approximate.", 24

Text[Style["Let us see this approximation by the

plane on the oroginal 3D surface of Cobb-Douglas function", 24]]

po2 = ListPointPlot3D[{{2.3, 1.4, N[2.3^(1 / 3) 1.4^(2 / 3)]}} ,

AxesLabel  {"x", "y", "z"}, BoxRatios  Automatic, PlotStyle  PointSize[0.03]];

Show[g1, plane1, l1, l2, po1, po2]

TextStyle"Looks like a good approximation, but difficult to see.

Let us magnify the graph around (x, y, z) = (2, 1, 21/312/3)", 24

label3 = Graphics3DTextStyle"(2.3, 1.4, 2.31/31.42/3)", Blue, 28,

{2.3, 1.4, 1.7};
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Show[g11, plane1, l1, l2, po1, po2, label3]

Text[Style[

"With this 3D Graph, we can easily understand so-called 'Total Differentiation'",

24]]

TextStyle"Let us rewrite our Cobb-Douglas function

in an abstract way: z = f(x, y) = x1/3y2/3", 24

TextStyle"'Total Differentiation': dz =
∂

∂x
f(x, y)dx +

∂

∂y
f(x, y)dy.", 24

Text[

Style["In plain English, we would like to know how much does the functional value

z change when both x and y change a little bit", 24]]

Text[

Style["To understand the total differnatiation on a graph, let us consider fairly

big changes in x and y: dx = 1.8 = (3.8-2), dy = 1.5 = (2.5 -1)", 24]]

ar1 = Graphics3D[

{Blue, Thick, Arrow[{{2, 1, N[2^(1 / 3) * 1^(2 / 3)]}, {3.8, 1, b1 + s1 * 3.8}}]}];

ar11 = Graphics3D[{Black, Thick,

Arrow[{{2, 1, N[2^(1 / 3) * 1^(2 / 3)]}, {3.8, 1, N[2^(1 / 3) * 1^(2 / 3)]}}]}];

ar12 = Graphics3D[{Green, Thick, Arrow[

{{3.8, 1, N[2^(1 / 3) * 1^(2 / 3)]}, {3.8, 1, b1 + s1 * 3.8}}]}];

ar2 = Graphics3D[

{Blue, Thick, Arrow[{{2, 1, N[2^(1 / 3) * 1^(2 / 3)]}, {2, 2.5, b2 + s2 * 2.5}}]}];

ar21 = Graphics3D[{Black, Thick,

Arrow[{{2, 1, N[2^(1 / 3) * 1^(2 / 3)]}, {2, 2.5, N[2^(1 / 3) * 1^(2 / 3)]}}]}];

ar22 = Graphics3D[{Yellow, Thick, Arrow[

{{2, 2.5, N[2^(1 / 3) * 1^(2 / 3)]}, {2, 2.5, b2 + s2 * 2.5}}]}];

plane2 = Plot3D[d[x, y], {x, 1, 4}, {y, 0.5, 3},

AxesLabel -> {"x", "y", "z"}, ImageSize  Large,

LabelStyle  Directive[Large, Bold], PlotStyle  Red, BoxRatios  Automatic];

po3 = ListPointPlot3D[{{3.8, 2.5, N[3.8^(1 / 3) 2.5^(2 / 3)]}} ,

LabelStyle  Directive[Large, Bold], AxesLabel  {"x", "y", "z"},

BoxRatios  Automatic, PlotStyle  PointSize[0.03]];

l3 = Graphics3D[{Red, Thickness[0.01], Line[{{3.8, 2.5, N[2^(1 / 3) 1^(2 / 3)]},

{3.8, 2.5, N[3.8^(1 / 3) 2.5^(2 / 3)]}}] }];

(*ld1 = Graphics3D[{Thick,Line[{{2,1,[2^(1/3) 1^(2/3)]},

{3.8,2.5, N[2^(1/3) 1^(2/3)]}}]}]*)

ld1 = Graphics3D[{Dashed, Thick, Line[{{2, 1, N[2^(1 / 3) 1^(2 / 3)]},

{3.8, 2.5, N[2^(1 / 3) 1^(2 / 3)]}}] }];
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label4 =

Graphics3DTextStyle"(3.8, 2.5, 3.81/32.52/3)", Blue, 28, {3.8, 2.5, 3.5};

Text[Style["See the at Graph at first.", 24]]

Show[g1, ar1, ar11, ar12, ar2, ar21, ar22,

l3, ld1, po1, po3, plane2, label4, ImageSize  Full]

Text[Style["What total differentiation does is:", 24]]

l4 = Graphics[{Red, Thickness[0.03],

Line[{{2, 0}, {2, N[3.8^(1 / 3) 2.5^(2 / 3)] - N[2^(1 / 3) * 1^(2 / 3)]}}]}];

l5 = Graphics[{Green, Thickness[0.03],

Line[{{1, 0}, {1, (b1 + s1 * 3.8 - N[2^(1 / 3) * 1^(2 / 3)])}}]}];

l6 = Graphics[{Yellow, Thickness[0.03],

Line[{{1, (b1 + s1 * 3.8 - N[2^(1 / 3) * 1^(2 / 3)])},

{1, (b1 + s1 * 3.8 - N[2^(1 / 3) * 1^(2 / 3)] + b2 + s2 * 2.5 - N[2^(1 / 3)])}}]}];

l7 = Graphics[{Black, Thickness[0.01], Dashed,

Line[{{0.5, (N[3.8^(1 / 3) 2.5^(2 / 3)] + 0.02 - N[2^(1 / 3) * 1^(2 / 3)])},

{2.5, (N[3.8^(1 / 3) 2.5^(2 / 3)] + 0.02 - N[2^(1 / 3) * 1^(2 / 3)])}}]}];

Show[l4, l5, l6, l7, ImageSize  Large]

Text[

Style["The tangent plane is avobe the curve => A little bit overestimation:", 24]]

TextStyle"The length of red line is 3.81/32.52/3 - 21/312/3 =", 24

N[3.8^(1 / 3) 2.5^(2 / 3)] - N[2^(1 / 3) * 1^(2 / 3)]

Text[Style["while the sum of green and yellow is", 24]]

N[b1 + s1 * 3.8 - N[2^(1 / 3) * 1^(2 / 3)] + b2 + s2 * 2.5 - N[2^(1 / 3)]]

Text[Style["An alternative and more intuitive interpretation is

to think a total differntiation as a summation of 2 vectors", 24]]

ar3 = Graphics3D[{Blue, Thickness[0.02], Arrow[{{2, 1, N[2^(1 / 3) 1^(2 / 3)]},

{3.8, 2.5, (b1 + s1 * 3.8 + b2 + s2 * 2.5 - N[2^(1 / 3) 1^(2 / 3)] )}}]}];

ar31 = Graphics3D[{Green, Thick,

Arrow[{{3.8, 2.5, N[2^(1 / 3) 1^(2 / 3)]}, {3.8, 2.5, b1 + s1 * 3.8}}]}];

ar32 = Graphics3D[{Yellow, Thick, Arrow[{{3.8, 2.5, b1 + s1 * 3.8},

{3.8, 2.5, b1 + s1 * 3.8 + b2 + s2 * 2.5 - N[2^(1 / 3) * 1^(2 / 3)]}}]}];
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Show[ar1, ar11, ar12, ar2, ar21, ar22, ar3, ar31, ar32, ld1, po1, ImageSize  Large]

Text[

Style["Here the thick blue arrow is the gradient vector: ∇f = (f1, f2) at (x, y) =

(2, 1). It gives us the steppest increase (slope) at (2, 1).", 24]]

Cobb Douglas Utility Function
with Two Goods: x13y23
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By the way, this is
how Cobb Douglas
Function, x23y13, looks like

Here we use the Cobb Douglas
Function: x13y23. Let
us see it in a full scale.
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Before thinking about partial differnatiation,

let us consider Indifference Curve

Let us cut z = x1/3y2/3 at z = 1.5
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The Contour made by z=1.5
plane gives us an indifference curve.
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By cutting with different value 'z's, we can have many

idifference curves representing different utility level.

But our main purpose now is to
understand partial derivatives
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Recall that a derivative in 2D is a

slope that approximates the original curve

at a specific point. How about in 3D?

Let us consider x1/3y2/3 at (x, y) = (2, 1).

Magniy it around (x, y, z) = (2, 1, 2^(1/3) 1^(2/3))
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We can guess that a plane is a strong

candidate for approximating this curved

surface at (x, y, z) = (2, 1, 2^(1/3)*1^(2/3))

Let us confirm our guess.
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Fix y at some value, then look at our 3D

graphic from x axis. The 3D becones like a 2D.

Here we fix y at 1.
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If we change the value of y, the pseudo 2D graphs

change its shape a bit. Here we fix y at 3.
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The contour is another 2D graphic
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We can see the differnces by the cutting values of y
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Now we focus
on the 2D with y 1.

Differentiate (x^(1/3))*(1^(2/3)) with respect x,
1

3 x2/3

Differentiate x^(1/3))*(y^(2/3) with respect

x. Here, we are doing partial differnetiation.

Please accept the result at this stage.

y2/3

3 x2/3

Derivative (= scalar) of 2D at x = 2
0.209987

Partial derivative of 3D at (x, y) = (2, 1)
0.209987

In short, partial derivative in

3D is a `slope' of 2D after fixing y (or x)

Partial derivative with respect

to x at (x, y, z)=(2, 1, 2^(1/3))*(1^(2/3))
is a slope of (x^(1/3))*(1^(2/3)) at x = 2

With the 'scalar value' of slope and the information

that the slope is evaluated at (x, z) = (2,
2^(1/3))*(1^(2/3)), we can derive a tangent line

The derived tangent line is z =
0.8399473665965822 + 0.20998684164914552*x
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As usual, tangent lines derived from derivatives

are Very good approximates of curves

Let us magnify the 2D graph

and the tangebt line around x = 2

1.9 2.0 2.1 2.2
x

1.24
1.26
1.28
1.30

z

Let us have a look at partial

derivative with respect to x at (2,1) on 3D
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We can do the similar procedure by fixing x at 2
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The contour is a 2D graphic
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Differentiate (2^(1/3))*(y^(2/3)) with respect y,

2 21/3

3 y1/3

Differentiate (x^(1/3))*(y^(2/3)) with respect

y. Here, we are doing partial differnetiation.

2 x1/3

3 y1/3

Derivative of 2D at y = 1
0.839947

Partial derivative of 3D at (x, y) = (2, 1)
0.839947
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Partial derivative with respect

to y at (x, y, z)=(2, 1, 2^(1/3))*(1^(2/3))
is a slope of (2^(1/3))*(y^(2/3)) at y = 1

With the 'scalar value' of slope and the information

that the slope is evaluated at (y, z) = (1,
2^(1/3))*(1^(2/3)), we can derive a tangent line

The derived tangent line is z =
0.4199736832982911 + 0.8399473665965821*y

1 2 3 4 5
y

1

2

3

4

z
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Partial derivative with respect to y at (2, 1, 21/312/3) on 3D
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If we combine the two tangent lines on 3D
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The two tangent lines in 3D give us a plane:

A Tangent Plane on (x, y, z) = (2, 1, 21/312/3)
x

3 22/3
+
2

3
21/3 y
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Recall that our goal is to use

derivatices (calculus) in economics: linear

approximation of 'non-linear' relationships

Can the tangent Plane at (x, y, z) = (2, 1, 21/312/3)
approxiapiate the curved surface at, for

example, (x, y, z) = (2.3, 1.4, 2.31/31.42/3) well?
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You can see that the point at (x, y, z) = (2.3, 1.4,
2.31/31.42/3) dipped into the plane a little bit,

but the plane is surely a good approximate.

Let us see this approximation by the plane on the

oroginal 3D surface of Cobb-Douglas function
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Looks like a good approximation, but difficult to see. Let

us magnify the graph around (x, y, z) = (2, 1, 21/312/3)
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With this 3D Graph, we can easily

understand so-called 'Total Differentiation'

Let us rewrite our Cobb-Douglas function
in an abstract way: z = f(x, y) = x1/3y2/3

'Total Differentiation': dz = ∂
∂x
f(x, y)dx + ∂

∂y
f(x, y)dy.
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In plain English, we would like to know

how much does the functional value z

change when both x and y change a little bit

To understand the total differnatiation on a

graph, let us consider fairly big changes in x

and y: dx = 1.8 = (3.8-2), dy = 1.5 = (2.5 -1)

See the at Graph at first.
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What total differentiation does is:
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The tangent plane is avobe

the curve => A little bit overestimation:

The length of red line is 3.81/32.52/3 - 21/312/3 =
1.61453

while the sum of green and yellow is
1.6379

An alternative and more intuitive interpretation is to think

a total differntiation as a summation of 2 vectors
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Here the thick blue arrow is the gradient

vector: ∇f = (f1, f2) at (x, y) = (2, 1). It gives
us the steppest increase (slope) at (2, 1).
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